Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Añadir filtros

Base de datos
Tipo del documento
Intervalo de año
1.
Mol Cell Proteomics ; 20: 100120, 2021.
Artículo en Inglés | MEDLINE | ID: covidwho-1284342

RESUMEN

Human coronaviruses have become an increasing threat to global health; three highly pathogenic strains have emerged since the early 2000s, including most recently SARS-CoV-2, the cause of COVID-19. A better understanding of the molecular mechanisms of coronavirus pathogenesis is needed, including how these highly virulent strains differ from those that cause milder, common-cold-like disease. While significant progress has been made in understanding how SARS-CoV-2 proteins interact with the host cell, nonstructural protein 3 (nsp3) has largely been omitted from the analyses. Nsp3 is a viral protease with important roles in viral protein biogenesis, replication complex formation, and modulation of host ubiquitinylation and ISGylation. Herein, we use affinity purification-mass spectrometry to study the host-viral protein-protein interactome of nsp3 from five coronavirus strains: pathogenic strains SARS-CoV-2, SARS-CoV, and MERS-CoV; and endemic common-cold strains hCoV-229E and hCoV-OC43. We divide each nsp3 into three fragments and use tandem mass tag technology to directly compare the interactors across the five strains for each fragment. We find that few interactors are common across all variants for a particular fragment, but we identify shared patterns between select variants, such as ribosomal proteins enriched in the N-terminal fragment (nsp3.1) data set for SARS-CoV-2 and SARS-CoV. We also identify unique biological processes enriched for individual homologs, for instance, nuclear protein import for the middle fragment of hCoV-229E, as well as ribosome biogenesis of the MERS nsp3.2 homolog. Lastly, we further investigate the interaction of the SARS-CoV-2 nsp3 N-terminal fragment with ATF6, a regulator of the unfolded protein response. We show that SARS-CoV-2 nsp3.1 directly binds to ATF6 and can suppress the ATF6 stress response. Characterizing the host interactions of nsp3 widens our understanding of how coronaviruses co-opt cellular pathways and presents new avenues for host-targeted antiviral therapeutics.


Asunto(s)
Factor de Transcripción Activador 6/metabolismo , Proteasas Similares a la Papaína de Coronavirus/metabolismo , Interacciones Huésped-Patógeno/fisiología , SARS-CoV-2/patogenicidad , Coronavirus Humano 229E/metabolismo , Coronavirus Humano 229E/patogenicidad , Coronavirus Humano OC43/metabolismo , Coronavirus Humano OC43/patogenicidad , Proteasas Similares a la Papaína de Coronavirus/genética , Degradación Asociada con el Retículo Endoplásmico , Células HEK293 , Humanos , Coronavirus del Síndrome Respiratorio de Oriente Medio/metabolismo , Coronavirus del Síndrome Respiratorio de Oriente Medio/patogenicidad , Mapas de Interacción de Proteínas , SARS-CoV-2/metabolismo , Respuesta de Proteína Desplegada , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/metabolismo
2.
ACS Infect Dis ; 6(12): 3174-3189, 2020 12 11.
Artículo en Inglés | MEDLINE | ID: covidwho-954597

RESUMEN

Human coronaviruses (hCoVs) have become a threat to global health and society, as evident from the SARS outbreak in 2002 caused by SARS-CoV-1 and the most recent COVID-19 pandemic caused by SARS-CoV-2. Despite a high sequence similarity between SARS-CoV-1 and -2, each strain has a distinctive virulence. A better understanding of the basic molecular mechanisms mediating changes in virulence is needed. Here, we profile the virus-host protein-protein interactions of two hCoV nonstructural proteins (nsps) that are critical for virus replication. We use tandem mass tag-multiplexed quantitative proteomics to sensitively compare and contrast the interactomes of nsp2 and nsp4 from three betacoronavirus strains: SARS-CoV-1, SARS-CoV-2, and hCoV-OC43-an endemic strain associated with the common cold. This approach enables the identification of both unique and shared host cell protein binding partners and the ability to further compare the enrichment of common interactions across homologues from related strains. We identify common nsp2 interactors involved in endoplasmic reticulum (ER) Ca2+ signaling and mitochondria biogenesis. We also identify nsp4 interactors unique to each strain, such as E3 ubiquitin ligase complexes for SARS-CoV-1 and ER homeostasis factors for SARS-CoV-2. Common nsp4 interactors include N-linked glycosylation machinery, unfolded protein response associated proteins, and antiviral innate immune signaling factors. Both nsp2 and nsp4 interactors are strongly enriched in proteins localized at mitochondria-associated ER membranes suggesting a new functional role for modulating host processes, such as calcium homeostasis, at these organelle contact sites. Our results shed light on the role these hCoV proteins play in the infection cycle, as well as host factors that may mediate the divergent pathogenesis of OC43 from SARS strains. Our mass spectrometry workflow enables rapid and robust comparisons of multiple bait proteins, which can be applied to additional viral proteins. Furthermore, the identified common interactions may present new targets for exploration by host-directed antiviral therapeutics.


Asunto(s)
COVID-19/metabolismo , Interacciones Huésped-Patógeno/genética , SARS-CoV-2/patogenicidad , Proteínas no Estructurales Virales/metabolismo , COVID-19/virología , Coronavirus Humano OC43/patogenicidad , Retículo Endoplásmico/metabolismo , Células HEK293 , Humanos , Proteínas de la Membrana/metabolismo , Mitocondrias/metabolismo , Unión Proteica , Mapas de Interacción de Proteínas/genética , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/patogenicidad , Síndrome Respiratorio Agudo Grave/metabolismo , Síndrome Respiratorio Agudo Grave/virología , Transfección , Proteínas no Estructurales Virales/genética , Virulencia/genética , Replicación Viral/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA